Move .

Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .

+ | + | + | + | – | – |

Divide the highest order term in the dividend by the highest order term in divisor .

+ | + | + | + | – | – |

Multiply the new quotient term by the divisor.

+ | + | + | + | – | – | ||||||||||

+ | + | + |

The expression needs to be subtracted from the dividend, so change all the signs in

+ | + | + | + | – | – | ||||||||||

– | – | – |

After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.

+ | + | + | + | – | – | ||||||||||

– | – | – | |||||||||||||

– |

Pull the next term from the original dividend down into the current dividend.

+ | + | + | + | – | – | ||||||||||

– | – | – | |||||||||||||

– | – | – |

Divide the highest order term in the dividend by the highest order term in divisor .

+ | – | ||||||||||||||

+ | + | + | + | – | – | ||||||||||

– | – | – | |||||||||||||

– | – | – |

Multiply the new quotient term by the divisor.

+ | – | ||||||||||||||

+ | + | + | + | – | – | ||||||||||

– | – | – | |||||||||||||

– | – | – | |||||||||||||

– | + | – |

The expression needs to be subtracted from the dividend, so change all the signs in

+ | – | ||||||||||||||

+ | + | + | + | – | – | ||||||||||

– | – | – | |||||||||||||

– | – | – | |||||||||||||

+ | – | + |

After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.

+ | – | ||||||||||||||

+ | + | + | + | – | – | ||||||||||

– | – | – | |||||||||||||

– | – | – | |||||||||||||

+ | – | + | |||||||||||||

– | + |

The final answer is the quotient plus the remainder over the divisor.

Divide (8x^4-3x+2x^2-5)÷(x^2+4)